Our World in Data de la Universidad de Oxford. https://ourworldindata.org/coronavirus/

The IFAC-CSS Corona Control Community Project. https://covid.ieeecss.org/

Potential Long-Term Intervention Strategies for COVID-19. Stanford University. https://covid-measures.stanford.edu/

Covid-19. Imperial College of London. https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/covid-19/

H. Daniel Patiño, S. Tosetti, J. Pucheta, C. Rodriguez Riveros. “Control del Brote de COVID-19 para Prevención del Colapso del Sistema Sanitario y UTI basado en el Distanciamiento Social, Confinamiento y Testeo”. Congreso ARGENCON 2020, IEEE; V Congreso Bianual de la Sección Argentina del IEEE (Institute of Electrical and Electronics Engineers of USA). Agosto de (2020).

Julián Pucheta, C. Salas, M. Herrera, H. D. Patiño y C. Rodriguez Riveros. Análisis y modelado de procesos dinámicos para medir el cambio de conducta social en el marco del COVID-19. Congreso ARGENCON 2020, IEEE; V Congreso Bianual de la Sección Argentina del IEEE (Institute of Electrical and Electronics Engineers of USA). Agosto de (2020).

H. Daniel Patiño y Julián Pucheta. Formulación de Estrategias para la Mitigación del Covid-19 basada en Inteligencia Artificial. Control del Brote de Covid-19 basado en el Distanciamiento Social, Confinamiento y Testeo con Aislamiento. Aportes desde la Ing. de Sistemas de Control e Inteligencia Artificial. Centro de Estudios en Tecnologías Inteligentes Academia Nacional de Ciencias de Bs.As. PANEL DEBATE. Setiembre de (2020).

H. Daniel Patiño. Seguimiento de la Evolución Temporal del Coronavirus en San Juan. Impacto de la Fase I durante 15 días de Distanciamiento Social Preventivo y Obligatorio en la provincia. Reporte Interno INAUT. 05 de Setiembre de 2020. San Juan. Argentina.

H. Daniel Patiño. Seguimiento de la Evolución Temporal del Coronavirus en San Juan. Impacto de la Fase III durante el período del 05 al 29 de Setiembre y Análisis de la Administración de las Fases propuesta por el Gobierno Nacional. Reporte Interno INAUT. 30 de Setiembre de 2020. San Juan, Argentina.

H. Daniel Patiño. Opinión de la OMS de Europa Respecto a las Cuarentenas como Estrategia “principal” de Mitigación del Coronavirus Evolución del Coronavirus en San Juan. Un enfoque matemático de Mitigación. Reporte Interno INAUT. Octubre 2020.

H. Daniel Patiño. Seguimiento de la Evolución Temporal del Coronavirus en San Juan Impacto de la Fase I durante 15 días de Distanciamiento Social Preventivo y Obligatorio en la provincia. Revista la U de la UNSJ. (2020).

H. Daniel Patiño, and Santiago Tosetti; “Control of COVID-19 Outbreak for Preventing Collapse of Healthcare Capacity”. En revision en el Annual of Control Review, International Federation of Automatic Control (IFAC), Junio de (2020).

Cristian Rodriguez Rivero, Julián Pucheta, H. Daniel Patiño, Short-Term Rainfall Forecasting with E-LSTM Recurrent Neural Netwoks usin Small Dataset. Springer, Oct. (2020).

A. Rutherford. Mathematical Modelling Techniques, New York: Dover, (1994).

E. A. Bender. An Introduction to Mathematical Modeling, New York: Dover, (2000).

N. Gershenfeld. The Nature of Mathematical Modeling, Cambridge University Press, (1998).

K. Ogata. Modern Control Engineering. 5th Ed. Prentice Hall, (2010).

Benjamin Kuo. Automatic Control Systems. Prentice Hall, 9ed, (2014).

Norman S. Nise. Control System Engineering. 6th Edition, John Wiley & Sons, (2011).

J. M. Carcione, J. Santos, C. Bagaini, and J. Ba. A simulation of a COVID-19 epidemic based on a deterministic SEIR model. Submitted to Frontiers in Public Health, April 20, (2020).

Fred Brauer. Compartmental Models in Epidemiology. Chapter in Lecture Notes in Mathematics -Springer-Verlag, April (2008).

Mark J. Willis, Victor H. Grisales Díaz, O. A. Prado-Rubio, and M. von Stosch. Insights into the dynamics and control of COVID-19 infection rates. Journal of Chaos, Solitons and Fractal, Elsevier Ltd, Pre-proof, (2020).

Reza Samenia. Mathematical Modeling of Epidemic Diseases; A Case Study of the COVID-19 Coronavirus. Quantitative Biology, Populations and Evolution, Cornel University, draf paper, (2020).

Neil M. Ferguson, D. Laydon, G. Nedjati-Gilani, et all. Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. Imperial College COVID-19 Response Team, March 16, (2020). DOI: https://doi.org/10.25561/77482.

G. Giordano, F. Blanchini, R. Bruno, P. Colaneri, A. Di Filippo, A. Di Matteo, and M. Colaneri. Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy. Nature Medicine, Letters, April 20, (2020). doi.org/10.1038/s41591-020-0883-7.

C. Tsay, F. Lejarza, M. A. Stadtherr, M. Baldea. Modeling, state estimation, and optimal control for the US COVID-19 outbreak. In reviewing, (2020).

G. Stewart, K. van Heusden, and G. A Dumont. Coronavirus: policy design for stable population recover: Using feedback to maximize population recovery rate while respecting healthcare capacity. IEEE Spectrum, April, (2020). https://spectrum.ieee.org/biomedical/diagnostics/how-control-theory-can-help-control-covid19.

Karl J. Åström, and T. Hägglund. Advanced PID Control. International Society of Automation, (2006).

Karl J. Åström, and T. Hägglund. Control PID Avanzado. PEARSON EDUCACIÓN, S.A., (2009).

J. Cvejn. PID control of FOPDT plants with dominant dead time based on the modulus optimum criterion, in Archives of Control Sciences. (2016).

C. Wang, and D. Li. Decentralized PID Controllers Based on Probabilistic Robustness, (2011).

C. Knospe. PID Control. IEEE Control System Magazine, Feb., (2006).

N. Chitnis. Introduction to SEIR Models. Workshop on Mathematical Models of Climate Variability, Environmental Change and Infectious Diseases. Department of Epidemiology and Public Health Systems Research and Dynamical Modelling Unit. May, (2017).

F. Brauer. Chapter 2 Compartmental Models in Epidemiology. Department of Mathematics, University of British Columbia, (1984).

F. Brauer, and C. Castillo-Chavez. Mathematical models in population biology and epidemiology. Springer, vol. 2, (2012).

O. Diekmann, H. Heesterbeek, and T. Britton. Mathematical tools for understanding infectious disease dynamics. Princeton University Press, vol.7, (2012).

M. De la Sen, A. Ibeas, S. Alonso-Quesada, and R. Nistal. On a new epidemic model with asymptomatic and dead-infective subpopulations with feedback controls useful for Ebola disease. Discrete Dynamics in Nature and Society, (2017). https://doi.org/10.1155/2017/4232971.

Sarah A. Al-Sheikh. Modeling and Analysis of an SEIR Epidemic Model with a Limited Resource for Treatment; Global Journal of Science Frontier Research, Mathematics and Decision Sciences, Volume 12 Issue 14, (2012).

B. Kuchen, and R. Carelli. Control Digital Directo. School of Engineering, Universidad Nacional de San Juan, (2010).

R. Isermann. Digital Control System. Springer-Verlag, vol.1, (1989).

N. Minorsky, “Directional stability of automatically steered bodies.” J. Amer. SOC. Of Naval Engineers, pp. 280-309, v. 34, (1922).

Giannakeas V., Bhatia D., Warkentin M. T., Bogoch I., Stall N. M.. Estimating the Maximum Capacity of COVID-19 Cases Manageable per Day Given a Health Care System’s Constrained Resources, American College of Physicians. Journal of Annals of Internal Medicine. https://doi.org/10.7326/M20-1169, (2020).

Arghya Das, cAbhishek Dhar, Srashti Goyal, Anupam Kundu. “Covid-19: analysis of a modified SEIR model, a comparison of different intervention strategies and projections for India”. medRxiv preprint doi: https://doi.org/10.1101/2020.06.04.20122580. June 23, 2020.

Liu, Y., Gayle, A. A., Wilder-Smith, A., Rocklov J. The reproductive number of COVID-19 is higher compared to SARS coronavirus, Journal of Travel Medicine 27, Issue 2, March 2020, https://doi.org/10.1093/jtm/taaa021.

Ruoran Li; Caitlin Rivers; Qi Tan; Megan B. Murray; Eric Toner; Marc Lipsitch. Estimated Demand for US Hospital Inpatient and Intensive Care Unit Beds for Patients With COVID-19 Based on Comparisons WithWuhan and Guangzhou, China. JAMA Network Open. 2020;3(5):e208297. doi:10.1001/jamanetworkopen.2020.8297.

D. Patiño, “Notas del Curso EE/CS 676: Neural Information Processing Systems”, Electrical and Computer Engineering Department, Stevens Institute of Technology, Hoboken, New Jersey, U.S.A., 1998.

D. Patiño, “Notas del Curso: INTELIGENCIA ARTIFICIAL APLICADA A LA IDENTIFICACION Y CONTROL”, INAUT. Cursos de posgrado en el doctorado de ingeniería de sistemas de control. (2020).

S. Haykin, “Cognitive Dynamic Systems”. Cambrige University Press, 2012.

F. Lewis, and S. Sam. Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC Press, 2010.

D. P. Bertsekas. Reinforcement Learning and Optimal Control. Athena Scientific, Belmont, Massachusetts, 2019.

Bertsekas D. P. and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific, Belmont, Massachusetts, 1996.

Total Page Visits: 104 - Today Page Visits: 1